Internet of Things Raspberry Pi & Arduino Serial Communication

Abdallah El Ghamry

- A sensor is a device that detects some type of input from the physical environment.
- The input can be light, heat, motion, pressure or any number of other environmental phenomena.

ADC vs. DAC

- The microcontroller of the board has a circuit inside called an analog-to-digital converter (ADC) that reads this changing voltage and converts it to a number between 0 and 1023.
- The ADC in Arduino is 10-bit.

- The analogRead() returns a number between 0 and 1023 that is proportional to the amount of voltage being applied to the pin.
- To scale the numbers between 0 and 5, divide 5 by 1023 and multiply that by sensorValue :

voltage = sensorValue * (5.0 / 1023.0);

LM35 Temperature Sensor

- The LM35 sensor is an analog temperature sensor.
- The LM35 can measure temperature in the range of -55°C to 150°C.

Criteria	Description
Power supply	4V to 30V
Temperature Range	–55°C to +155°C
Accuracy	±0.5°C
Output Scale Factor	10mV/°C
Output at 25°C	250mV

LM35 Temperature Sensor: Components

- You need
 - Arduino
 - LM35 Sensor
 - Jumpers
 - Breadboard

LM35 Temperature Sensor: Circuit

 Connect breadboard power (+) and ground (-) rails to Arduino 5V and ground (GND), respectively.

2. Plug the LM35 sensor into the breadboard.

8

3. The sensor GND pin connects to the ground on Arduino.

4. The sensor Power pin connects to the 5V on Arduino.

5. Wire up the sensor Vout pin to the analog pin A0 on Arduino.

LM35 Temperature Sensor: Code

```
int sensor value; // Variable to store sensor reading
                        // Variable to store the voltage
float volt;
                        // Variable to store temperature (Celsius)
float temp;
void setup() {
 Serial.begin(9600); // Begin serial communication at 9600 baud rate
}
void loop() {
  sensor value = analogRead(A0);
                                // Reading the value from sensor
  volt = sensor_value * (5.0 / 1023.0); // Convert sensor reading into voltage
  temp = volt * 100;
                                          // Convert voltage into temperature
  // Print the temperature in Celsius
  Serial.print(temp);
  Serial.println(" C");
 delay(500);
                                          // Short delay
```

}

LM35 Temperature Sensor: Alternative Code

```
int sensor_value; // Variable to store sensor reading
                     // Variable to store temperature (Celsius)
float temp;
void setup() {
  Serial.begin(9600); // Begin serial communication at 9600 baud rate
}
void loop() {
                                // Reading the value from sensor
  sensor value = analogRead(A0);
  temp = sensor_value * (500.0 / 1023.0); // Convert sensor reading into voltage
  // Print the temperature in Celsius
  Serial.print(temp);
  Serial.println(" C");
 delay(500);
                                            // Short delay
}
```

- The Raspberry Pi is capable of doing all the things you'd expect from a computer.
- Everything from browsing the internet and playing games, to watching movies and listening to music.
- Raspberry Pi is known as a single-board computer, but that doesn't mean it's not powerful.
- Raspberry Pi can do anything a bigger computer can do.
- Over the years, the Raspberry Pi has evolved, increasing its memory, improving its performance, and adding features.

Raspberry Pi 3 Model B+: Specifications

Processor	Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.4GHz	
Memory	1GB LPDDR2 SDRAM	
Connectivity	 2.4GHz and 5GHz wireless LAN, Bluetooth 4.2, BLE Gigabit Ethernet over USB 2.0 4 × USB 2.0 ports 	
Access	Extended 40-pin GPIO header	
Video & Sound	 1 × full size HDMI MIPI DSI display port MIPI CSI camera port 4 pole stereo output and composite video port 	
SD Card Support	Micro SD format for operating system and data storage	

Raspberry Pi System

TV / Monitor

Raspberry Pi Models

- Raspberry Pi is able to run a wide range of software, including a number of different operating systems – the core software that makes a computer run.
- Raspberry Pi OS (previously called Raspbian) is our official supported operating system.
- The Raspberry Pi OS is based on Linux.

Raspberry Pi OS

Download Raspberry Pi OS.

https://www.raspberrypi.com/software/operating-systems/

Raspberry Pi OS

Our recommended operating system for most users.

Compatible with:

All Raspberry Pi models

Raspberry Pi OS with desktop

Release date: February 21st 2023 System: 32-bit Kernel version: 5.15 Debian version: 11 (bullseye) Size: 924MB Show SHA256 file integrity hash: Release notes

Download for W

• Download Pi Imager to install the OS.

https://www.raspberrypi.com/software/

Install Raspberry Pi OS using Raspberry Pi Imager

Raspberry Pi Imager is the quick and easy way to install Raspberry Pi OS and other operating systems to a microSD card, ready to use with your Raspberry Pi. <u>Watch our 45-</u> <u>second video</u> to learn how to install an operating system using Raspberry Pi Imager.

Download and install Raspberry Pi Imager to a computer with an SD card reader. Put the SD card you'll use with your Raspberry Pi into the reader and run Raspberry Pi Imager.

• Click Choose OS.

• Click Use Custom.

• Choose the Raspberry Pi OS file, and Click Open.

Insert the SD Card into you computer, and Click Choose Storage.

• Choose your SD Card.

Click on Settings button.

• Check Set hostname.

• Check Enable SSH, as we will access the Raspberry Pi remotely.

Set your username and password.

- We will access the Raspberry Pi using Wi-Fi, so check Configure Wireless
 LAN and choose your SSID and Password, and choose the country EG.
- We will use "iotlab" and "hostiotlab" as SSID and password.

• Click Save button.

• Click Write.

• Wait until writing is done.

 After writing is done, the SD Card will be ejected automatically, so reinsert the SD Card to complete the remaining steps.

- Open Mobile hotspot, and make sure your Wi-Fi info is correct.
- Make sure to turn on the hotspot.

ŵ	Home		Mobile hots	spot	
Fi	Find a setting		Share my Internet connection with other devices		
Net	work & Internet		On On		
			Share my Internet connection from		
₽	Status		Wi-Fi	\sim	
(i.	Wi-Fi		Share my Internet cor	nnection over	
朢	Ethernet		• Wi-Fi		
C≊	Dial-up		O Bluetooth		
%	VPN		Network name:	iotlab	
Л.	A* 1		Network password:	hostiotlab	
57	Airplane mode		Network band:	2.4 GHz	
((p))	Mobile hotspot		Edit		

Download the following files.

https://github.com/asparatu/raspberrypi-wpa-supplicant.conf

段 master → 않 1 bran	ch 🕟 0 tags		Go to file Code -	
asparatu Updated SSH Server Instructions		Local	Codespaces	
LICENSE.md	Create LICENSE.md	▶ Clone	(?)	
README.md	Updated SSH Server Instruction	HTTPS GitHub CLI		
🗅 ssh	Create ssh	https://github.com/aspar	atu/raspberrypi-wpa-s	
wpa_supplicant.conf	Update wpa_supplicant.conf	Use Git or checkout with SVN usi	ng the web URL.	
i≡ README.md		단 Open with GitHub Desktop		
Raspberry	Pi Wifi Configuration	Download ZIP		

- Open the file wpa_supplicant.conf, and edit it to your Wi-Fi info.
- Make sure to save changes.

• Copy the files wpa_supplicant.conf and ssh to your SD Card.

• Eject the SD Card, and insert it into your Raspberry Pi.

• Connect your Raspberry Pi to the power supply.

Raspberry Pi as PC

• You can connect mouse, keyboard and monitor as you use your PC.

Raspberry Pi as PC

- After connecting your Raspberry Pi to power, it will be connected to your Wi-Fi automatically and have an IP address.
- Open Mobile hotspot, and copy that IP address.

Network name:	iotlab	
Network password:	hostiotlab	
Network band:	2.4 GHz	
Edit		
Devices connected:	1 of 8	
Device name	IP address	Physical address (MAC)
raspberrypi	192.168.137.145	b8:27:eb:fd:ac:ef

- The Raspian OS on the Raspberry Pi allows for remote login and control via SSH (Secure Shell).
- Download & install the PuTTy application.

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

- Open PuTTy, and enter the Raspberry Pi IP address in the Host Name.
- Click Open button.

RuTTY Configuration	? ×
ategory:	
Session Logging Terminal Keyboard Bell Features Window Appearance Behaviour Translation Selection Colours Connection Proxy SSH Serial Telnet Rlogin SUPDUP	Basic options for your PuTTY session Specify the destination you want to connect to Host Name (or IP address) 192.168.137.145 22 Connection type: SSH Serial Other: Telnet Load, save or delete a stored session Saved Sessions Default Settings Load Save Default Settings Close window on exit
<u>A</u> bout <u>H</u> elp	Always Never Only on clean exit

Click Accept button.

- Enter your username and password, and click Enter.
- Now, you can access your Raspberry Pi via Secure Shell.

 To access your Raspberry Pi configurations, Enter the following command sudo raspi-config

• For example, to enable/disable Interface Options, select it and click Enter.

• Select VNC, and click Enter.

• Select Yes, and click Enter.

Click Ok.

- The Raspberry Pi can be controlled like any other desktop computer using a keyboard, mouse, and monitor.
- The VNC (Virtual Network Computing) allows you to remotely control the desktop interface of the Raspberry Pi from another computer or mobile device without the need for a monitor.
- The SSH only provides terminal access.

Download and Open VNC Viewer, and Enter the IP address of your Pi.

• Enter your username and password, and click Ok.

192.168.	137.145 - VNC Vie	ewer			\times
	V2 Authentication			×	
		Authenticate to 192.168.137.145	VNC Server ::5900 (TCP)		
	Enter VNC Sen (Hint: NOT you	ver credentials ır RealVNC account	details)		
	Username:	pi			
	Password:	••		ø	
	Remember	password	Forgot pass	sword?	
	Catchphrase:	Bridge stick puma. /	August forward twis	st.	
	Signature:	3c-4e-1f-60-d8-91-	2c-75		
		Stop	OK Can	cel	

• Now, you can graphically access your Raspberry Pi from anywhere.

Parallel Communication

• In parallel communication, where many bits are sent at the same time.

Serial Communication

- Serial communication is simply a way to transfer data.
- The data will be sent sequentially, one bit at a time.

Serial Communication: UART Protocol

- UART means "Universal Asynchronous Receiver Transmitter".
- When you use serial communication between Arduino and Raspberry Pi, you're using the UART protocol.
- The UART protocol allows you to communicate between the 2 boards.

Raspberry Pi & Arduino Serial Communication

Raspberry Pi & Arduino Serial Communication

• The easiest way is to use a USB cable between both board.

- When connecting the Arduino with a USB cable, you should see it appear as /dev/ttyACM0, or /dev/ttyUSB0.
- Sometimes the number can be different, for example /dev/ttyACM1.
- Simply run **ls** /dev/ttyACM* and you should see it.

• Open Thonny Python IDE.


```
# Import the serial library
import serial
```

```
# Initialize serial communication
ser = serial.Serial('/dev/ttyACM0', 9600)
# Flush any bytes that could already be in the input buffer
ser.flush()
while True:
```

```
# Check if some data is available
if ser.in waiting > 0:
```

```
# Read all bytes until a newline character is detected
line = ser.readline()
```

```
# Decode the received data to Unicode
line = line.decode('utf-8')
```

```
# Print data
print(line)
```


References

- Interfacing LM35 Temperature Sensor with Arduino
- Install Raspbian OS and Connect to Hotspot
- Raspberry Pi Arduino Serial Communication